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0. Introduction and Preliminaries

In this paper we consider an inverse boundary value problem for Maxwell’s
equations. This problem was proposed in [S-I-C] and it is the analog, in this
context, of the inverse conductivity problem, which has received a great deal
of attention in recent years (see for instance the survey paper [S-U I] and the
references given there).

The problem we shall consider is, roughly speaking, whether knowledge of
the energy needed to maintain a given voltage on the surface of a conductor
is enough to determine its electric permittivity, magnetic permeability, and
electrical conductivity. We restrict our attention to the case in which the time
variation of the electromagnetic field is neglected. We now state more precisely
the mathematical problem.

Let 2 C R? be a bounded open set with smooth boundary. Let &, 4, be
positive constants, and let g,=0 and weR — 0. We assume that &(x),
p(x)>0in Q, o(x) =0 in Q, and &(x) — &,, p(x) — Uy, 0(x) — 0, €CH(Q).
Maxwell’s equations for the time-harmonic electromagnetic field are

curle=wh in Q, o=iou,
©.1) . .
curlai=0e in 2, B=—iwe+o.
Physically, (e, k) is the time-harmonic electromagnetic field, w is its frequen-
cy, ¢ denotes the electric permittivity of the conductor ©Q, u denotes the
magnetic permeability of £, and ¢ denotes its conductivity. As noted in the
discussion in [S-I-C], the total energy through the boundary 9Q is

&=Re | v-(enh)dS=Re | (vAe) -hdS,
a0 a0
where v denotes the unit outer normal to 92 and dS denotes surface measure.

This motivated SOMERSALO, IsAACSON & CHENEY to define the boundary map,
analogous to the Dirichlet-to-Neumann map, as

(0.2) Aa,ﬁ:v A 6139 - VA hlag,
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where e, h satisfy (0.1). In [S-I-C] it was proved that this map is well defined
for all but at most a discrete set of frequencies w;. From now on we shall
assume that w as in (0.1) is not one of these exceptional frequencies.

The inverse problem we shall consider here is whether knowledge of A, 4
determines o and B uniquely in , ie., whether the map

0.3) (6 B) D Aug

is injective. In [S-I-C] it was proved that the formal linearization of A is injec-
tive at a constant background. Since the range of A is not closed, one cannot
deduce local injectivity of A by some variant of the implicit function theorem.
In this paper we prove local injectivity of A near a constant pair (o, f,)-

Theorem 0.4. Let o, = iwpty, By = —iwe, + 0,. Let &, 4;>0in 2, 620

in Q and & — &y, 1, — Uy, 0 — 0L, €CHR), j=1,2. If
7 7 * J *

©.5) Agp, = A

0.8y

then there exists €(2) > 0 such that

(a1, B1) = (a2, Bo)  in Q

whenever
oy — agllwrne () + 18 — Ballwr=(a) <&

The general outline of the proof of Theorem 0.4 follows the same lines as the
proof of the global uniqueness theorem for the inverse conductivity problem
given in [S-U II]. Namely, one first proves an identity involving products of
solutions of the equation under consideration. Then one constructs exponen-
tial growing solutions of the equation to obtain information, via this identity,
of the Fourier transform of the unknown function. There are two main dif-
ficulties in carrying out this approach for the problem under consideration
here. First, we cannot reduce Maxwell’s equations to a Schrédinger-type equa-
tion. The best we can do is to reduce Maxwell’s equations to a system whose
principal part is the Laplacian times the identity operator. We can construct
exponential growing solutions under appropiate smallness assumptions on the
first-order terms. Also, in our case we have to construct global solutions in
order to guarantee that the solutions constructed satisfy the condition that the
electric and magnetic field be divergence-free. In order to determine the two
unknowns « and B simultaneously one has io study the asymptotic expansion
of these solutions in a free parameter. The second and, perhaps, the main dif-
ficulty is that such asymptotic expansions are not available in dimension 3 in
general, since these solutions are global ones. We overcome this difficulty by
obtaining the necessary asymptotic expansions in the directions needed. Full
details are in Section 2 and 3.

After these general comments we obtain the identity that we shall use and
the reduction of Maxwell’s equations to a system whose principal part is the
Laplacian.
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Lemma 0.6. Let &, 1; >0, 0 =0 in 2 and

o = lwﬂ], ﬂ] = '—1(1)8] + gj, ] = 1, 2.
Assume
o — auy B — B €CH(D),
A“1’/31 = A"‘zrﬁz'
Then
0.7) ); ((ay — @) Athy — (By — B,) e1e,) dx =0

for every solution (e;, bj) of
curl g =aily in 2, j=1,2,
curl b = Bie; in 2, j=1,2.
Proof. We have

§ o hyhy = jhz curl ¢; = f e (v ARy — jel curl A,.
Q Q EYe) o)
Then we obtain
0.8) [ aubihy + Bresey = [ 14, pe;.
Q FYel
Similarly we can prove that
0.9 [ cohihy + Breie; = | 4, pe;.
Q2 EYel

From (0.8) and (0.9) we conclude

0.10) | (07 — ) by — (By — B) ere; = | —eyA, per + erdq, p-
2 a2 v

Since A, is selfadjoint, we deduce from (0.10) that

©.11) [ (o —on) hiby — (B1 — By) eres = { ei(Ay 5, — Ao p) € =0,
2 Ere) !

concluding the proof of the lemma. [

Remark 0.12. The assumptions in Lemma 0.6 can be relaxed to o; — o €
C%(2), B; — B+ € C*(£22). Also the assumption in Theorem 0.4 can be relaxed
to o; — o, € C7(2), B; ~ B, € C"(R). This is done by proving that if o, f¢
C®(R), then A,z determines 9%¢|3q, 3”B|sq for all y. This is the analog of
the KouNn-VogELus result for the inverse conductivity problem [K-V]. The
result can be proved by using the methods of [L-U] or [S-U III], that is, by
computing the full symbol of the pseudodifferential operator A, 4.
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Lemma 0.13. Let (e, h) € C*(2). Then (e, h) satisfies (0.1) if and only if it
satisfies
Ae+Lyge —VIna-Ve+ Hess(Inf) e + afe =0 in 2,

0.14) div(fe) =0 in Q,
1
h=—curle in Q.
or «
Ah+ Lygh—Ving- Vh+Hess(lna) h+ afh =0 in 2,
(0.15) div(ah) =0 in Q,

1
e=—curlh in Q.

B
Here Lyg is the first-order (3X3) system given by

Log = ((In(af))y, V, (In(af))y,V, (In(ep)),, V).
Proof. From (0.1) we deduce that

1

(0.16) —a curl (— curl e) + afe =0, div(fle) =0 in Q.
(84

Thus we obtain

0147 —oacurl (i curl e) + Vv (% div(ﬁe)) +afe=0 in Q.
[0

By wusing the fact that
(0.18) Au = —curl{curl ) + V- div «,
we get (0.14). Now if (e, h) satisfies (0.14), then

curl (i curl e) =fle in Q,

o
which leads to (0.1).
A completely analogous argument proves the equivalence of (0.1) and
.15). 0O

In Section 1 we construct the exponential growing solutions we need. A
detailed analysis of the asymptotic expansion for large frequencies of the ‘‘re-
mainder’’ is necessary if we are to obtain information about both coefficients
o and B when we plug these special solutions into the identity (0.7). This is
done in Sections 2 and 3.

Our interest in this problem came from listening to stimulating talks by
CHeNEY and IsaacsonN. We also thank them for making their preprint [S-I-C]
available to us. While this paper was being written, we received an interesting
preprint by Corton & PAIVARINTA [C-P] in which they consider the inverse
scattering problem at a fixed energy for electromagnetic waves. They assume
that the magnetic permeability is constant, so there is only one function,
namely B, to be determined. They prove a global result in this case.
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1. Special Solations

We fix k€ R® — 0. Let w, w, €S be such that
(%)) ¢k, w1) =<k, wy) = (w1, W) =0
where (,) denotes the standard scalar product in R3. We also choose
(1.2) p=w;+iw,.
Let s€ R". We consider

k
(1.3) E=sp+i EY +g(s) oy,
2
s
where
2
(1.4) |k|* + 4c,

g(s) =
4s + 2V4s? + k| + 4e,,
and ¢, = a,B,. Notice that with the choice of £ # as in (1.3) we have
(1.5) E=c, ¢&-m=0,
where - denotes the standard scalar product in C3. The main result of this

section is the following

Theorem 1.6. Let o = iwp, f= —iwe +0 with y,e>0 in 2, 6 =0 in Q.
Extend o = oy, B= 4 in Q°. Let £ 1 be as in (1.3). Let —1<3J <0. Then
there exist (2, d) >0, R> 0 such that if s> R and

1.7 e = agllwae@) + 18 — Bellws=(ay < 7,
then there is a unique solution of (0.14) in R? of the form
(1.8) e=e"(n+wx ),

with w € H5(R®) and w = 0(1) as s — . Here L3(R?) denotes the Hilbert
space

LE(R?) ={f:§ (1 +[x%)?| f(x)|? dx < oo};

HZ(IR®) denotes the corresponding Sobolev space.

Before proceeding with the proof of Theorem 1.6 we recall a fundamental
result of [S-U III.

Temma 1.9, Let (€C*—R", n=3, teC with {-{ =t Let —1<5<0. Then
given f€HY .1 (R"), m = 0, there exists a unique u € H§(R") satisfying

(1.10) Lou=Au+2{-Vu=f in R"
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Moreover,
(1.11) e lley = 7] ||fHH5+1
We denote
(1.12) u =L¢‘1f.
A consequence of Lemma 1.9 is that

_ C
(1.13) 1L g, ap = m ,

where the norm in (1.13) denotes the operator norm.

Remark 114. The proof in [S-U II] was given under the condition that
£eC" — 0 with ¢-¢ = 0. However, the same proof applies to this case.

An additional fact that we shall need about the solution u of (1.10) is that,
under the same assumptions as in Lemma 1.9 with feL3,;, u actually
belongs to H}(R?). More precisely, the following lemma holds.

Lemma 1.15. Let —1 < 0 < 0. Let fe L}, (R™), n = 3. Let {, t, u be as in Lem-
ma 1.9. Then
ue HY(R™).
Moreover,
(1.16) [ Vellzey = ClFlz, @

for some C > 0.
Proof. The proof of this result was given in [S II]. Since this is not readily
available we give a sketch of the proof here.

Let
={xeR", § <|x| <3},

Q,={xeR" 1<|x| <2}.

Let g€L?(,). Suppose w € H>(£2,) is a solution of Aw + 2I-Va = g where
|I| =1, 1€ C. Then (see [ST])

(1.17) Voo llFaay = CUI @By + 1 flZ2@)) -

In our case we known already that f¢ L}, (R"). Then w € H,.(R") by stan-
dard elliptic estimates. We get the result from the local estimate (1.17) by a
scaling argument. Consider the transformation T =x/R. Let d(y) =u o Tt
Then it is easy to see that # satisfies the equation

(1.18) Ad + 2Rl- Vi = R*f,
where f = foTz!. applying (1.17) to (1.18) in the domain £, we get
(1.19) 1V |}as)yis2 = CRAI? |2,y + CR?N Flley -
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Therefore we conclude that since ¢ < 0,

(1.20)
I a+1xH?|vul?
2R

R=|x|=

§C<(1+R2)"

2\ 0 2 2 2
——(1+9R2)5+1)§§|xg§3k L+ 15D Q112 uf? + [ £1P).

Using the fact that (1 +9R?)/(1 + R?) is bounded, letting R=2/, j=
1,2,..., and summing over j, we obtain the desired result. [J

By (1.16) we then obtain that
(1.21) 1L g, a) = C.

Proof of Theorem 1.6. The transport equation for w is
(1.22) Ly — (Vlna-V—-Lyg) w+ (—¢-Vina
+ Hess(In ) + (ef —¢,)) w + (w-VIn(ap)) &
= (- Vina)n— (n-VIn(ep)) & — (Hess(In B) + of —c,) 7.

The left-hand side of (1.22), other than Ly, involves first-order derivatives
of y as well as a potential term. The right-hand side of (1.22) involves terms
of order O(s) as s = oo, Let us apply Lgl to both sides of (1.22). Then we
must solve in H5(R?) the equation

(1.23) (I+ F, + F,) w = L;'(right-hand side of (1.22)),
where I denotes the identity operator and

Fi=Li'(Ly—Vina-V),
24

F=Li'(=¢-Vina+ (VIn(apf)) &+ Hess(In B) + aff — c,).
Now using (1.13) and (1.21) we conclude that

IFillay,my = CILE iz, a3 615

(1.25)

1 Follmg my = CILE iy, 13 025
where
a2 Eap = VIn o Vo,

& =[=¢-Vina+ (Vin(ap)) &+ Hess(In B) + aff — ¢, |wr(g) -

Since o and B are constants outside a ball, using the estimates (1.13) and
(1.21) we conclude that for & sufficiently small in (1.7), §; and J, can be
chosen arbitrarily small, proving the invertibility of (1.23) in H}(R3). We
also observe that the estimates (1.13) and (1.21) imply that §; = O(1), &, =
O(s) as s — oo, thereby concluding that w = O(1) as s > o. The last step in
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the proof of the theorem is to check the divergence-free condition in (0.14).
The unique global solutions constructed will allow us to check this condition.
We do not know how to prove it by using local solutions. From (0.17) we have

1.27) Pe — curl (—1— curl e) + l v (% div (,Be)) =

¢4 a

Taking the divergence of (1.27) we obtain

(1.28) div(fe) + div (—1— v (i div(ﬁe))) =

o B
Let

1 ..
1.29) p = — div(fe).
B
Then (1.28) can be rewritten as
(1.30) div (i vp) + fp =0.
o
Let us define
14
(1.31) qg=—.
Va
Then g satisfies
(1.32) Ag + \/_ +pa)] g=0.
\/E
From the construction of e as in (1.8), using the fact that £-# = 0, we obtain
(1.33) g=¢e"Ch,
1
where h = (é-w+ - VB + VB-w + div ) .
BN

We find that heL3(R?®) satisfies

Ah +2E-Vh + \/_ + (af—c,)| h=0.

x/E

Using Lemma 1.9 we find that A2 =0 for large ¢ implying that
div(fe) =0. [
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2. Asymptotics

As we mentioned in the Introduction, in order to get information about
& and B from the identity (0.7) and the special solutions (1.8) we need to com-
pute explicitly the asymptotic expansion of y as s — co. This cannot be done
in general, but the special structure of Maxwell equations will allow us to do
the asymptotics we need. First, we specialize { in Lemma 1.9.

Lemma 2.1, Let { and u(x, {) be as in Lemma 19. Let —1 <3, 0'<0, §' <4.
Ve take
{=sw with seRY, |w]=1.

If feHY(R™), then

@2) un, ) = 289 L g,
Ay
where a is the unique solution in L3(R™ to
2.3) 2w-Va =f,
lim sR=0 in L3 (R").
S—0

Proof. Let us consider su =v. Then by using Lemma 1.9 we have that
2.4 [o(s, x, W)|gy = C

uniformly in s. Since the inclusion H}(R") < L3 (RR") is compact (this in an
easy consequence of Lemma 4.1 of [M]), we conclude that for every sequence
v, = v(s,, X, W), §, — oo, there is a convergence subsequence v(s, o> % W). Let

(2.5) a= grg V(Spy)s %> W) € L3(R™).
In principle, a depends on the sequence taken. However, we can see that this
is not the case: Since u satisfies the equation

Au+2¢-Vu=f, (= s,,(i)w,
taking the limit as » — o of the equation we get that « as in (2.5) must satisfy
(2.6) 2w Va =f.

However, there is a unique L% (R") solution of (2.6) (see the arguments in
proving Corollary 3.4 in [S-U II}). Therefore

a= lim su(x, {),
500
concluding the proof of the lemma. [J
In our case we need to get a further term in the expansion of y as in (1.8).

In general it is not possible to do so. To indicate under which type of assump-
tions this is possible, we now state a lemma whose proof we shall use later on.
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Lemma 2.7. Let 6,0, (, s, W, u be as in Lemma 2.1. Assume fé€ H3(R™) and

a€ W3(R"). Then
@9 ur, = 220 PO g

s

as s — oo, where bEL%;([R") is the unique solution to

2.9) 2w- Vb = —Aa,

and lim, . s’R =0 in L3(R").

Proof. The proof follows the same lines as Lemma 2.1. The assumption

a € W3(RR") is needed to use the uniqueness and existence lemma of [S-U II;
the fact that a has compact support implies —Aa€L%,,. O

We now find the asymptotics of y that we shall need, with y as in (1.8).
From now on we shall assume o, f€ CZ,(Q). Let us set
(2.10) T =|o—alo@ +118 - Bullog -

Proposition 2.11. Let y, T be as in Theorem 1.6 with 7, < 7. Then there exist
scalar functions d, d, and d,, and vector functions D and R such that

(2.12) w=(d +d)p+dk+ b +R.
Moreover, ’
(2.13) dy=di(x, p, B) k], |dllug = Cry,
(2.14) dy=di(x,5,p, k), lim ||z =0,
@2.15) == -1,
Oy
(2.16)
D =Dy (x,p,k) + Di(x,p, k) | k| + Dy (x,p, %) |k|?, |Dj|g3= Cry, j=0,1,2,
@.17) R=R(x s p, k), lm s|R|x =0,

where k = k| |k|, C is a positive constant independent of t{, and —1 <3’ <5 <0.

Proof. We use methods similar to those used in the proof of Lemmas 2.1 and
2.7. Our assumptions on « and B imply that w e H3(R?). We shall set

v=A+G,

where A satisfies a “‘transport equation’’ given below. As in Lemma 2.1, the
function A is uniquely determined by w, and the remainder G satisfies

@19 fim | G/, = 0
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for any —1 < ¢’ < 4. The equation determining A is
(2.19) 2p-VA—p-VIna(k+A4) +Vin(af)- (k+A)p=0.
Thus 4 € H§(R?). We shall show that
A =dp+ drk

with d; and d, as in (2.13) and (2.15). We rewrite (2.19) as
2p V( ! A) 1 (Vin(af)-A) p + 1 (p-Vina)k
. — = afB) - —_(p- a
Vo Vo Vo

1
———(k-VIn s

and decompose 4 =A4; + A, with 4;, j =1, 2, satisfying

(2.20) 2p-V (% A2) = % (p-Vna)k,
o' o

1 1 1
. V(——a,) = == (v e (k-1
221) 2p-V (\/; Al) 7 (Vin(ap)Ay) p 7 ( n(aB)) p

1
— = (VIn(aB) 4;) p.
84

It is clear that d,k satisfies (2.20). From (2.20) and the fact that p-V is an
invertible operator from HZF(R®) to H?%.{(R%), we see that
(2.22) Ay = dok.

Substituting (2.22) into (2.21) we get a unique solution A; € H{(R). Since the
right-hand side of (2.21) is a scalar multiple of p, it follows again from the
invertibility of p-V that there must be a scalar function d; satisfying (2.13),
so that

Ay =dyp.

Since 4 € H§(R?), we find that G € H3(R?). We now show that G has the
decomposition given by (2.12). Substituting ¥ = d;p + dyk + G into the equa-
tion (1.22) yields

(2.23)
AG+2¢‘-VG——(5-\71na)G—Vlna-VG+(Vln(aﬂ)-G)sp=11+12+I3,
where
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ik|?
2

(225 L = — (Ady + ik- Vd) k + (% -Vin oz) k+ (p-Vina) w;

i|k|? i
+ Ty (wy-VIn(ap)) p— EY (k-VIn(af)) k

_ % ((d1p + k) -V In(ap)) k

— Log(dip + dok) — (Hess(In B) + of — c¢,) (k + dip + k),
(2.26) I = — (gw; - Vdy) k + (g, -V In &) (7 + dyp + dok)

i\k|% [ [ik
_HEE () Vina) o+ & ¢V ina)k
2s 2 K

2
- f(k- Vin(ap)) & —g(4-Vin(apf)) w —I—% (w;-VIn(ap)) k

312
-8 (( _ I&] 601) -Vln(a,B)) w;
2s

12
- (Hess(lnﬂ)+oz,8——c,,¢)-(—llkI w1+§k)
2s s

ik
— (G-VIn(ap)) - (52— + gwl) — LG

— (Hess(In B) + of — ¢c,) G,
where g = O(1/s) is given by (1.4). We find that I, j = 1, 2, 3, satisfies
@.27) LeH} (R, LeH;.(RY), lm|L|a,, =0.
We decompose
(2.28) G=G, + G, +Gs,

where G, is the unique solution in H3(R?) of (2.23) with the right-hand side
replaced by I, where G; is the unique solution in H%(R?) of (2.23) with the
right-hand side replaced with I;, and where G; = G — G, — G;.

From (2.27) we have that



An Inverse Problem for Maxwell’s Equations 83

From (2.25), we have that I, = O(1). Therefore, we can use a method
similar to that which gave A to decompose

D
(2.30) G, == +R,
Ay

where D is the unique H3 solution to
2p0-VD - (p-Vina)D=1

and lim,_, s||R ||z, = 0. One easily checks that D satisfies (2.16).
We now consider the term G;. From (2.18), (2.29), and (2.30) we have
that

(2.31) lim | G [ms, = .
S0

We claim that there exists a scalar function d; satisfying (2.14) such that
(2.32) G, =d;p.
Indeed, G, satisfies
AGy +26- VG — (¢4 VIna) Gy — VIna- VG
= —[(VIn(aB) - Gy) s + (Ad; + ik- Vd; + gw,- Vd))] p,

with the right-hand side a scalar mutiple of p. Formula (2.32) follows easily
from the fact that A +26-V— (£-VIna) —Ving-V is invertible,
Finally, by defining R = R + G; we get

o D
G1+G2+G3=d1p+ — + R,
s
and by (2.29), lim,, s||R||gs, = 0. The proof is now complete. [J

Proposition 2.33. Let &, w, t be as in Theorem 1.6 with 1{ < t. Then
(2.34) E-w=B+R
with
Slirg R ||lg, =0, d'<d,

where
(2.35) B =B(x, p, k)|k|.
Moreover, there exists C > 0 independent of t;, so that
(2.36) IBllay = Cr.
Proof. Let 7 = ¢- w. Then using (1.19) we check that  satisfies
237 Ag+26-Vg—(¢-Vina)y—Vina Vi

= —&LypW — & (Hess(In B) + aff — ¢,) (n + W).
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Since w € H3(R?) and the right-hand side of (2.37) is of order O(s) as
s — oo, it follows that y is in H3,;(R?®). Therefore, there exists a unique
W€ H3(R?) satisfying (2.37) and, moreover, ¥ = O(l1) as s— o. Using
arguments analogous to the ones in the proof of Proposition 2.11 we obtain
the expansion

w=B+R'
where B satisfies
(2.38) 2p-VB— (p-Va)B= —pLA — p(Hess(In f) + af —c,) (k + A),
and the function R’ satisfies
(2.39) }Lrg [R ||lmg. =0, o'<a.
From (2.13) and (2.15) it follows that the right-hand side of (2.38) belongs

to H3,.,(R?); hence Be H3(R?). It is easy to check that B satisfies (2.35)
and (2.36). O

3. Proof of Theorem 0.4

We use the identity (0.7) and the special solutions (1.8). We take p as in
(1.2), and we choose &, #; as in (1.3) and &,, 7, as in (1.3) with p replaced
by —p. Our solution ¢; is given by

G.D e=e"Si(+w), j=1,2.
Then we have

(€) erey = ek, + mwa + myi + wiwy).
Using (1.3) and (2.11) we get

. 1
(3.3)  ee, =™k <|k|2 +kAD 4 k- AD 4D 4D 4 0 (—)) ,
S

where AD = dPp + d”k. (See (2.12).)

The magnetic field h; involves derivatives of the electric field, and
therefore we must be careful in determining the hehavior of %4, as s — oo,
as well as its dependence on k. Using (0.10), we have

1 i
(3.9 == curl (7% (n; + ;)
7

= Y (Ex(n+ yy) +eurlyy),  j=1,2.
Now by a direct computation

1
(3.5 (E1xm) - (& X1) =%|kl4—|k|2c*+0(;)-



An Inverse Problem for Maxwell’s Equations 85

Therefore

. 1
(3.6) alozzhlhxz=e’xk<%]k|4—|k]2c*+ Eg-) +0(;),
where J=1

I = curl yq- curl y,,

L= (& xy1) - (LX),

Iy = (& Xy1) - (&2Xm) + (LX) - (§1Xmy),

L= (& x(n + yy)) -curl yy + (& X (172 + W) - curl yy.

The strategy of our proof is to find an asymptotic expansion in s of the
left-hand side of (0.7) after substituting (3.3) and (3.6). By (3.3), the term
€16, = O(1) as s > oo. We show below that the term given by (3.6) is O(s).
We then determine in the asymptotic expansion the coefficients of the terms
of order O(s) and O(1). (It turns out that the higher-order terms do not give
any useful information.) Then the identy (0.7) implies that these coefficients
must be zero. This leads to an integral equation in the Fourier transform space

for (l - ‘1—> and (l - l) . To prove the uniqueness result on Theo-
oy ay 1 2
rem (0.4) it will be crucial to known the dependence on k of the coefficients
in the asymptotic expansion.
In the first step of the proof we determine the asymptotic expansion in
s of the terms I, j = 1, 2, 3, 4, as well as their dependence on k. From (2.12)
we have

3.7

(3.8) I =curl(dPp + dPk) - curl(—dPp + dPk) + o(1).
Thus,
3.9) L=0L(xp, k)|k|*+ o), |L|wsiq = Crr.

The term I, can be written as
(B3.10) L = (&1 X)) (&%)
= (&1- &) (w1 v2) — (- w2) (& wy)
= (&1 &) (Wi o) + (k- yy) (k- yy)
— (& v2) (&1~ w1 + (& w) (k- ) + (k- wy) (&1 wy).
Using (1.3) we conclude that
G.11) &b = —%|k12—c*+0<%),
and from (2.12)

(3.12) vi- vy = k| (/ﬂ —1> ( ha —1> +o(1),
Oy Ay

(3.13) k-l//j=|k]2< /ﬁ —1) +o(l), j=1,2.
Oy
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Now using (2.34), (2.35) as well as (3.10)—(3.13) we obtain

4
3.14) ,zzl_kl_( ﬂ_l)(/ﬂ_l)
2 o, '

+ by (x, p, )|k |? + La(x, p, K) K] + 0(1),
where I, L, satisfy
(3.15) I Bjllwsr @y = Cri, j=1,2.
The term I; can be written as
—L= (& w) Ciom) — (- &) (wy-m)
+ (C1-w2) (&) — (&1- &) (v m1)
==& w) Giomp) + ik wy) (G- mo) — (- &) (v 1)

= (&2 w2) (& m) +ilk-y2) (&-m) — (&1 &) (wa-m1).
By using (2.12), (3.11) and noting that #; =k + 0o(/s), j=1,2, we con-
clude that
i(k-w) (&1-m) — (&0 &) (wi-ma) + ik wo) (& m) — (&1~ &) (war 1)

= c k| [(\/g—l) + ( z—i—l)]+0(%>.

Therefore, by (2.34), we get

A A 1
(3.16) I = Ly(x, p, D)k + I p, B)|K]* + 0 (—) :
s
with
(3.17) HI3J HWS’I(Q) = CTl, ]= 1, 2.

However, the term I, is O(s). We use the decomposition (2.12). The first
term of I;, as in (3.7), can be written as II; + II, + II; + O(1/s), where

Iy = (spx(k + yy)) - curl s,
(3.18) IL = ($ikx(k + wy)) - curl s,
I = (px(—=L1ilk|* @+ yy)) - curl y,.
Using (2.12) and noting that pxk =i|k| p, we have

y 1 1
curl w, = (VdP® x—p) + (VAP x—p) + (VdS¥ xk) + — curl D@ +0<—~) ,
S S

spxyy =ilk| sd®p+ (pxDD) + o(1).
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Thus,
(.19) II =ilk| sp- (Va2 xk) + i|k| p curl DP + 0(1)
+ilk| sd"p- (V&P xk) +i|k| dfVp- curl DP + 0(1).

Formula (3.19) gives the asymptotic expansion of /I; in s up to order o(1).
From (3.18), it is easy to see that II, and II; are O(1). Using arguments
similar to those used to amalyze the terms I, j =1, 2, 3, we obtain

(3.20) IL, = IL(x, p, k) |k|? + o(1),

(3.21) Il = I3y (x, p, k)| k| + I (x, p, k) [K|* + 0(1),
where

(3.22) 1L |lwer @) + | st |wor ey + | D2 |lwe1 0y = Cry.

In a completely analogous fashion we analyze the second term of I, to
obtain expansions and estimates similar to (3.20), (3.21), and (3.22).
Now from (3.9), (3.14), (3.16), (3.19), (3.20), and (3.21) we obtain

Proposition 3.23. Let I, j =1, 2, 3, 4 be as in (3.7). Then there exist functions
UV, U,V;, j=0,1,2,3, such that
4 k 4 [04] 24)
E L — -1 —= —1 ) +sUx, p, k) +V(x, p, k) +0(1),
4 2 oy oy,
j=1
where
3 ~ .
Vx, p, k) = )] Vi(x, p, k) | k|7
Moreover,

| Vilwtroy = Cry,  j=0,1,2,3.

Remark. The function U in Proposition 3.23 can be computed explicitly. We
have

\Ia* N a, \]a* N a,

It is not difficult to show that this term gives a contribution equal to zero
in term O(1) in the expansion of (0.7) in s.

Now we come to the second step in the proof of Theorem 0.4. Let us
denote

(3.24) y;(/ﬂ—l)</9171).
' Cy : oy
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Substituting (3.3) and (3.6) into the identity (0.7), equating the coefficients
of O(1) and O(s) to zero, and passing to the limit, we obtain two integral
identities. A computation shows that the coefficient of O(1) is zero and that
the coefficient of O(s) is given by

(3.25)

o L1 L ( 1) ]
el (L _ 1Yo (L 1+9) 5 + k|? ¢,
5‘5 [ﬂ (ﬁz 131)| | (0‘2 0‘1)( w % % e
+ Seix'k [( 1 1) S12(x, D, k) + (_ - _) S11 (x> P> k)] = 0
p B B

where

(3.26)

Si2(x, ps k) = ((By Bo) =B NK> + (k- AP +k-4D + 4D - AD) (x, p, k),
Si1(x, p, k) = —V(x, p, k),

with 4D = d¢ + diPk as in (2.2).

At this point, we choose p as a function of k. From (1.1) and (1.2) we
see that one can choose w;(k) and w,(k) as two mutually orthogonal
tangent vector fields in §2, so that w;(k) and w, (k) are piecewise continuous
functions of k. Then p(k) is also a piecewise continuous function of k. For
simplicity we write

Slj(x’ k) =S1j(xa p(k)’ k)a j= 1, 2.

We denote by Si; ;(x, k) and Sy ;(x, k), j =0, 1, 2, 3, the coefficient of the
jth power of |k| in the k expansion of S;; and Sy, respectively. Then from
(2.13), (2.15), and Proposition 3.23 we obtain the estimate

(3.27) [ Sie,jlwarey + 1Sz, llworoy = Cer,  j=0,1,2,3.

Now we take solutions of (0.11) for the magnetic field 4 of the form (1.8),
and we proceed in a completely analogous fashion. We conclude that

(3.28)

ik zi_i)kz_(i 1) 1+~Ikl4 ( 1)k2]
je [“* o )G T h) O s, ) e
. 11 11
+le | (— = =) Sux k) + (- =) Sux k)| =0
!5 e [(az 051) (%, k) ( 5 51) 21 (X )]

where

\%msw'f
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and the functions S, S, satisfy

3
(3.29) S1(x, k) = E Suix k) k|, 1=1,2,
j=0
with
(3.30) [ 21, w1y + | S22, jllwot@y = Cry, j=0,1,2,3.
We also denote

1 1 1 1
(3.31) U=——-—, V=———.

o aq i B

We now state the main result in this second step.
Proposition 3.32. Let U and V be as in (3.31). Then, for t, small enough,

(3.33) 1Ula @ + 1 VIav ey = CU U@ + 1V ize),

where C depends only on ||oj|wr.=0) and || Bi|wr=0), Jj=1,2.

Before giving a proof of this result, we define the operator 5” 1 151,
Jj=2,1=0,1,2,3, by
(3.34) Fa(f) () = § 7581 (x, k) x (%) f(x) dx,

where x is a cut-off function in C§°(R®) satisfying ¥ =1 on supp o U
supp B. We claim that .%;; is a bounded map from L*(Q) to L?*(R3). This
is proved by using a shght variation in the proof of Theorem 18.1.11’ in [H],
together with the estimates (3.27) and (3.30). We include here a short proof
of this result for the sake of completeness.

We have

Fi1(f) (k) = 5 Sk i(n =k, k) f(n) dn,

where ~ denotes the Fourier transform in x and
5’?]*1 = %,zx
From (3.27) and (3.30) we readily see that
L +{n)* G-k k)| = CM  vkeR?,

where

(3.35) M= sup Y 5|D S x, k)| dx < +oo.
keR? lalzs @

Now using Lemma 18.1.12 in [H] we conclude that 5” 1 maps L*(Q) to
L%(R?®), with norm bounded by CM.
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Proof of Proposition 3.32. Multiplying both sides of (3.35) by 1/|k|® we get,
for k+0,

. 3\/\ ﬂi . 3 .

kL (DA +9)) () = = SEV(k) =Y k|77 FA,;V) (K)

|k|

3
Y
=0

j

j=0
- k|73 (FA,;U) (k).
Thus,

e

k| (O +y Dezqr>1y = B:1 Vlzq >y
3
+ Y (I F iV lqesn + 1 F1,Ullzqe>n)
j=0

= C(| Uz + 11V )5
consequently,

NUA + Mae = CU U@y + 1 Vize) -

If y is small, we get the same estimate for U. Similar arguments can be applied
to (3.28) to yield a similar estimate for V. [

For the final step of proof of Theorem 0.4 we use the the method of con-
tradiction. Suppose that the map (o, f) — A, is not injective near a con-
stant pair (o, 8,) in the C7 topology. Then there exist two sequences of

pairs: (o™, By, (™, M) € CH(R) such that

(3.36) (af”, By * (5", )  Vn,
with
(3.37) Aain),ﬂfn) = Aaé"),ﬂy’) Vn,
7
(3.38) (6™, B) > (a4, B) a5 n—> oo
7 J *
We define

339 o) =a,, BPE) =By, VXEQY, Vn, j=1,2.

Let us denote

1 1 1 1
um = — _ . , Ve = [ — — ,
(=) FERg

(n) (n)
o™ = v , = v .
U™ |20y + [V 320 IT®™ |3y + [V ™ [0
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Then
(3.40) 1T 20y + 1V P |72y =1 Vn.

Since (3.25), (3. 28) hold whenever A, 5 = = A,,,5,, We conclude that there
exist functions 5” Y, k), 1=i, j= 2 so that

(3.41) | Zf oy = Ct,

with 7, = maxj=1,2(||ozj(") — |l + |],Bj(") — By |lw™=). Moreover,

(3.42) [eTF[BIV M k[P =T + pf) Lk|* + O™ k| ¢,]
2

+ [ P W2 (k) + TP 2P (1, k)] =0
o

(3.43) !ge"""‘[ailklzﬁ‘“ —POA+7M) 3k =V Pk ¢,

+ [T O™ P (x,k) + VO Z (x, k)] =
Q

(n) (n)
y(n) = < aln - 1) 012" - 1) s
Oy Oy
(n) (n)
F = T _q 72 _ 4
By B

Proposition 3.32 implies that
1T a2y + 1V 1@ = Cs

where

for some constant C independent of n. Thus, by applying Sobolev’s embedding
theorem and by extracting a subsequence, we may assume that (T™, V)
converges to a function pair (U¥, V*) in L?(2), where £ D Q is a bounded
domain. From (3.40) it is clear that

(3.44) 1T* 22y + 1V* 222y = 1,
(3.45) U(x) =V*(x) =0 VxeD\Q.
Passing to the limits in (3.42) and (3.43) and noting, from (3.41), that
L= (@)
y®, 50, F (x, k) —= 0 V&,
we get
(3.46) Je=k(BLV* k|2 = LU* |k|* + U*| k|?c,) = 0,
Q
(3.47) §e™ (kU k|2 = 1v*|k|* + V*|k|*c,) = 0.

Q
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Multiplying by |k| ~2 and taking the inverse Fourier transform on the left-
hand side of (3.46) and (3.47), we conclude that (U* V*) is the L? solution
of the 6 X6 system

(A +c,) U* + g2V* =0,
(3.48) :
(A +c) V¥ +aiU* =0.

The function (U* V'*) has compact support. By standard elliptic regularity
we see that it is in Cy° (Q2). Now, we apply (A + ¢,) to the first equation
of (3.48). Using the second one we get

(A +¢,)2U* — 22U = 0.
Recall that c2 = o2f%. Then we have proved that
A2U* + 2¢, AU* = 0.

By unique continuation we conclude that U* =0 in Q. Proce~eding in a com-
pletely analogous fashion we conclude also that V* =0 in Q. However, this
contradicts (3.44). The proof is now complete. [
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