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O. Introduction and Preliminaries 

In this paper we consider an inverse boundary value problem for Maxwell's 
equations. This problem was proposed in [S-I-C] and it is the analog, in this 
context, of the inverse conductivity problem, which has received a great deal 
of attention in recent years (see for instance the survey paper [S-U I] and the 
references given there). 

The problem we shall consider is, roughly speaking, whether knowledge of 
the energy needed to maintain a given voltage on the surface of a conductor 
is enough to determine its electric permittivity, magnetic permeability, and 
electrical conductivity. We restrict our attention to the case in which the time 
variation of the electromagnetic field is neglected. We now state more precisely 
the mathematical problem. 

Let g2 C R 3 be a bounded open set with smooth boundary. Let e., It. be 
positive constants, and let a,___0 and r  We assume that e(x), 
It(x) > 0  in ~,  a(x) >=0 in ~,  and e(x) - e . ,  It(x) - i t . ,  a(x) -a .~C2(g2) .  
Maxwell's equations for the time-harmonic electromagnetic field are 

curl e = c~h in g2, a = iogit, 

(0.1) c u r l h = f l e  in f2, f l = - i c o e + a .  

Physically, (e, h) is the time-harmonic electromagnetic field, co is its frequen- 
cy, e denotes the electric permittivity of the conductor g2, It denotes the 
magnetic permeability of t2, and a denotes its conductivity. As noted in the 
discussion in [S-I-C], the total energy through the boundary 0g2 is 

�9 = R e  s v . ( e ^ h ) d S = R e J  ( v ^ e ) . h d S ,  
O~ aQ 

where v denotes the unit outer normal to 0t2 and dS denotes surface measure. 
This motivated SO~ERSAZO, IS~CSON & Cm~NEY to define the boundary map, 
analogous to the Dirichlet-to-Neumann map, as 

(0.2) A~,#:v ^ el oa ~ v ^ h]oo, 
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where e, h satisfy (0.1). In [S-I-C] it was proved that this map is well defined 
for all but  at most a discrete set of frequencies coj. From now on we shall 
assume that co as in (0.1) is not one of  these exceptional frequencies. 

The inverse problem we shall consider here is whether knowledge of  A~,# 
determines ot and fl uniquely in t2, i.e., whether the map 

(0.3) (or, t )  A A~.# 

is injective. In [S-I-C] it was proved that the formal linearization of  A is injec- 
tive at a constant background. Since the range of  A is not closed, one cannot 
deduce local injectivity of  A by some variant of  the implicit function theorem. 
In this paper we prove local injectivity of  A near a constant pair (or,, f l . ) .  

Theorem 0.4. Let cz, =/co/ t , ,  f l ,  = - i coe ,  + or,. Let ey, ltj > 0 in ~ ,  r >_ 0 
in ~ and ej - e , ,  /zj - / t , ,  try - or, E C7(f2), j = 1, 2. I f  

(0.5) A~l,fll = ac~2,fl2, 

then there exists e(s > 0 such that 

whenever 

(Oil, ~1) = (Or2, ~2) in 

The general outline of  the proof  o f  Theorem 0.4 follows the same lines as the 
proof  of  the global uniqueness theorem for the inverse conductivity problem 
given in [S-U II]. Namely, one first proves an identity involving products of  
solutions of  the equation under consideration. Then one constructs exponen- 
tial growing solutions of  the equation to obtain information, via this identity, 
of  the Fourier transform of  the unknown function. There are two main dif- 
ficulties in carrying out this approach for the problem under consideration 
here. First, we cannot reduce Maxwell's equations to a Schr6dinger-type equa- 
tion. The best we can do is to reduce Maxwell's equations to a system whose 
principal part is the Laplacian times the identity operator. We can construct 
exponential growing solutions under appropiate smallness assumptions on the 
first-order terms. Also, in our case we have to construct global solutions in 
order to guarantee that the solutions constructed satisfy the condition that the 
electric and magnetic field be divergence-free. In order to determine the two 
unknowns c~ and fl simultaneously one has to study the asymptotic expansion 
of  these solutions in a free parameter. The second and, perhaps, the main dif- 
ficulty is that such asymptotic expansions are not available in dimension 3 in 
general, since these solutions are global ones. We overcome this difficulty by 
obtaining the necessary asymptotic expansions in the directions needed. Full 
details are in Section 2 and 3. 

After these genera! comments we obtain the identity that we shall use and 
the reduction of  Maxwell's equations to a system whose principal part is the 
Laplacian. 
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Lemma 0.6. Let ej, pj > O, tr => 0 in ~ and 

Assume 

Then  

(0.7) 

for every solution (ej, hi) of 

curl ej = 0/jhj 

curl h: = fljej 

otj = iogltj, fly = -io~ej + trj, j = 1, 2. 

Aotm,fll = As2, &. 

( ( te l  --  0/2) h lh2  - ( i l l  - f12) e l e2 )  d r  = 0 
/2 

in g2, j = l ,  2, 

in g2, j = l ,  2. 

Proof. We have 

0/lhlh2= ~ h 2 c u r l e l =  ~ el" (v ^ h 2 ) -  ~elcur lh2.  
/2 f2 OQ Q 

Then we obtain 

(0.8)  ~ ~ l h l h 2  + f l2ele2 = ~ elAc~2,#2e2. 
/2 at2 

Similarly we can prove that 

(0.9)  ~ 0/2hlh2 + f l l e l e2  = ~ e2Acq,#le  1. 
/2 3/2 

From (0.8) and (0.9) we conclude 

(0.10) ~ (Or 1 --  012) hlh 2 -- (ill --f12) ele2 = ~ - e 2 A . i , # , e l  + elA~z,#2e2. 
/2 3f2 

Since A~,~ is selfadjoint, we deduce from (0.10) that 

(0.11) J ( o q -  0/2) h l h 2 -  ( ~ 1 - f 1 2 )  ele2 = j e l ( A ~ , , f l , -  A~2,p2) e2 = 0, 
/2 ~D 

concluding the proof of the lemma. [] 

Remark 0.12. The assumptions in Lemma 0.6 can be relaxed to 0 / j -  0/, E 
C2(t~), flj - ft. E C2(Q). Also the assumption in Theorem 0.4 can be relaxed 
to o / j -0 / ,E  C7(~),  f l j - f l .  EC7(~) .  This is done by proving that if 0/, fl~ 
C~176 then A~, B determines 070/[0/2, Orfllo/2 for all y. This is the analog of 
the KOHN-VoGvLmS result for the inverse conductivity problem [K-V]. The 
result can be proved by using the methods of [L-U] or [S-U III], that is, by 
computing the full symbol of the pseudodifferential operator A~,p. 
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I.emma 0.13. Let (e, h) E C2(f2). Then (e, h) satisfies (0.1) if  and only if  it 
satisfies 

Ae + L~#e - V ln ~.  Ve + Hess(ln fl) e + ~fle = O in f2, 

(0.14) div(fle) = 0 in 12, 

1 
h = - - c u r l e  in t2. 

o r  ot 

Ah + L~zh - V In ft. ~Th + Hess(In c~) h + c~flh = 0 in 12, 

(0.15) div(~h) = 0 in f2, 

1 
e = -  curl h in I2. 

B 
Here L~# is the first-order (3 • 3) system given by 

L~#= ((ln(ufl))x V, (ln(afl))x2V, (ln(cr 

Proof. From (0.1) we deduce that 

(0.16) - ~ c u r l ( l c u r l e )  + ~ f l e = 0 ,  d i v ( p e ) = 0  in t2. 

Thus we obtain 

(0.17) - ~ c u r l ( ~ l  c u r l e ) + V ( ~ - d i v ( f l e , ) + a f l e = 0  in f2 .  

By using the fact that 

(0.18) Au = -cur l (cur l  u) + V. div u, 

we get (0.14). Now if (e, h) satisfies (0.14), then 

c u r l ( ~ c u r l e ~  =Be in t2, 
N - -  / 

which leads to (0.1). 
A completely analogous argument proves the equivalence of (0.1) and 

(0.15). [] 

In Section 1 we construct the exponential growing solutions we need. A 
detailed analysis of the asymptotic expansion for large frequencies of the "re- 
mainder" is necessary if we are to obtain information about both coefficients 

and fl when we plug these special solutions into the identity (0.7). This is 
done in Sections 2 and 3. 

Our interest in this problem came from listening to stimulating talks by 
C~N~Y and ISAACSON. We also thank them for making their preprint [S-I-C] 
available to us. While this paper was being written, we received an interesting 
preprint by CoLxos & PLVC~TA [C-P] in which they consider the inverse 
scattering problem at a fixed energy for electromagnetic waves. They assume 
that the magnetic permeability is constant, so there is only one function, 
namely d, to be determined. They prove a global result in this ease. 
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1. S p e c i a l  S o l u t i o n s  

We fix k E [R 3 - 0. Let 601,092 E S 2 be such that 

(1.1) (k ,  6Ol) = (k, 602) = ( 6 0 1 , 0 9 2 )  = 0 

where ( , )  denotes the standard scalar product in [R 3. We also choose 

P = 601 q- i602" (1.2) 

Let s ~ IR +. We consider 

75 

(1.3) ~ = sp + i --k +g(s )  6Ol, 
2 

k ilk12 g(s) 
= --  601 + k ,  

2s s 
where 

Ikl 2 + 4c ,  
(1.4) g(s)  = 

4s + 2 X/4s z + l k l  = + 4c, 

and c,  = cx.fl.. Notice that with the choice of  ~, ~/ as in (1.3) we have 

(1.5) ~2 = c , ,  ~ .  v /=  0, 

where �9 denotes the standard scalar product in C 3. The main result of  this 
section is the following 

Theorem 1.6. Let ot = i60it, t =  - i m e  + tr with lt, e > O in ~ ,  tr >_ O in Q. 
Extend ot = or., fl = t .  in g-2 c. Let ~, tl be as in (1.3). Let - 1  < t~ < O. Then 
there exist r(f2, O) > 0, R > 0 such that i f  s > R and 

0.7) I1~ - ~,11w3,-r + 11/7 - ~ , l lw3 - c ~ )  < ~, 

then there is a unique solution of (0.14) in •3 of the form 

(1.8) e = eX'r + q/(x, ~)) ,  

with ~u6HJ(~ 3) and ~ = O ( 1 )  as s--,oo. Here L~(~ 3) denotes the Hilbert 
space 

L~([R 3) = {f:  ~ (1 + [x[2) ~ If(x)l  2 dx < oo}; 

H~(IR 3) denotes the corresponding Sobolev space. 

Before proceeding with the proof of Theorem 1.6 we recall a fundamental 
result of  [S-U II]. 

Lemmal .9 .  Let ( E C n -  R n, n >_ 3, t ~ C with ( .  ( = t. Let - 1  < 0 < 0 .  Then 
given f E H~+l ( ff~n), m >= O, there exists a unique u EH"~(~ n) satisfying 

(1.10) Lcu = Au + 2( .  Vu = f in IR n. 
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Moreover, 
C 

(1.11) Ilull~ _-__ ~ Ilfll~+~. 

We denote 

(1.12) u = LFIf .  

A consequence of Lemma 1.9 is that 
C 

(1.13) IlL( 1 IJH~§ ---- - -  
Ir ' 

where the norm in (1.13) denotes the operator norm. 

Remark l.14. The proof in [S-U II] was given under the condition that 
~ C ~ -  0 with ~. ( =  0. However, the same proof applies to this case. 

An additional fact that we shall need about the solution u of (1.10) is that, 
under the same assumptions as in Lemma 1.9 with fEL2+I ,  u actually 
belongs to H~([R3). More precisely, the following lemma holds. 

I.emma 1.15. Let - 1  < ~ < O. Let fEL2+l(~ .n) ,  n >_ 3. Let ~, t, u be as in Lem- 
ma 1.9. Then 

Moreover, 

(1.16) 

for  some C > O. 

u~a~(~"). 

IlVullL~(~) ~ CII f lILL,(~ ~) 

Proof .  The proof of this result was given in [S II]. Since this is not readily 
available we give a sketch of the proof here. 
Let 

a l = { X ~ R  n, �89 <lxl  <31, 

~r = [X~ [~ n, 1 < I x  I <2} .  

Let g~L2(t21). Suppose co EH2(121) is a solution of Aco + 21. Vc0 = g where 
I I 1 - 1 ,  lEG 3. Then (see [SI]) 

(1.17) l[ vc~ IIb(o2) <- C( l l l  2 II~ 11~2(~0 + II fl l~2(o0). 
In our case we known already that f~L~oc([Rn). Then 6oEH2oc(R n) by stan- 
dard elliptic estimates. We get the result from the local estimate (1.17) by a 
scaling argument. Consider the transformation T = x / R .  Let a ( y ) =  u o T~ 1. 
Then it is easy to see that a satisfies the equation 

(1.18) Aa + 2RI. Va = R Z f  , 

where f = f o T ~  1. applying (1.17) to (1.18) in the domain O1 we get 

(1.19) - 2 = CR21112 CR211flIL2(~I) IlVulIL~o=<IyI__<=) < IlallL~(O,) + �9 
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Therefore we conclude that since 5 < 0, 

(1.20) 
< I< (1 + Ixl:) Iv . I :  

R=I~I =2R 

= + 9R2) ~ + 1 ~ =lxl=3R 
(1 + )xl2) (I/I 2 lul 2 + Iflz). 

Using the fact that (1 + 9R2)/(1 + R 2) is bounded, letting R = 2 j, j = 
1, 2 . . . . .  and summing over j ,  we obtain the desired result. [] 

By (1.16) we then obtain that 

2 1 (1.21) IlL( -1 IILa+a,Ita <-- C. 

Proof  of  Theorem 1.6. The transport equation for q/ is 

(1.22) Lr - (~7 In a .  V - LaB) ~u + ( - ~ .  V In a 

+ Hess(ln ft) + (aft - c , ) )  tu + (~u. V In(aft))  

= ( ( . V  In a) r / -  (q .  V ln(aft))  ~ -  (Hess(ln ft) + a f t - c , )  q. 

The left-hand side of (1.22), other than L~u, involves first-order derivatives 
of  ~u as well as a potential term. The right-hand side of (1.22) involves terms 
of  order O(s) as s --) co. Let us apply L~ -I to both sides of  (1.22). Then we 
must solve in H~(R 3) the equation 

(1.23) (I + F 1 + F2) ~u = L~-l(right-hand side of (1.22)), 

where I denotes the identity operator and 

F1 = L~ 1(Lap - V In a .  V), 
(1.24) 

F 2 = L ~ - I ( - ( .  V In a + (V In(aft)) ~ + Hess(ln ft) + aft - c , ) .  

Now using (1.13) and (1.21) we conclude that 

IIF111H~,H~ <= C[IL~ -111r~+l,tIk ~1, 

lIFE [IHJ,Hk < CllZi -1 IIL~+,,Hk ~2, 
(1.25) 

where 

(1.26) 
gl = [IL~# - V In a .  V []~/~,L~+,, 

~2 = 1] --~" V In a + (V In(aft)) ~ + Hess(In ,6) + aft - c. ]lrv,,o~(Q). 

Since a and ft are constants outside a ball, using the estimates (1.13) and 
(1.21) we conclude that for e sufficiently small in (1.7), ~1 and ~2 can be 
chosen arbitrarily small, proving the invertibility of  (1.23) in H~(IR3). We 
also observe that the estimates (1.13) and (1.21) imply that ~1 = O(1), ~2 = 
O(s) as s ~ to, thereby concluding that ~u = O(1) as s ~ oo. The last step in 
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the proof of the theorem is to check the divergence-free condition in (0.14). 
The unique global solutions constructed will allow us to check this condition. 
We do not know how to prove it by using local solutions. From (0.17) we have 

(1.27) fie - curl curl e + - -  V div (re  = O. 
ot 

Taking the divergence of (1.27) we obtain 

(1.28, d i v ( f l e ) + d i v ( - 1 V ( ~ d i v ( f l e , ) )  = 0 .  

Let 

1 
(1.29) p = - -  div(fle). r 
Then (1.28) can be rewritten as 

(1.30) div ( ~ -  Vp) 

Let us define 

+ r p  = 0 .  

P (1.3i) q - -  ~ . 

Then q satisfies 

t 1 ) - - A  +riot q = 0 .  (1.32) Aq + 1 

From the construction of e as in (1.8), using the fact that ~-~/= 0, we obtain 

(1.33) q = eX~h, 

where h = (~-!u + r/. \Tr + v r .  ~u+ div ~ u ) - -  

We find that hEL~([R 3) satisfies 

( '  - A  /_~ 

Ah + 2~- Vh + 1 + (otfl - c,)) h = 0 .  

Using Lemma 1.9 we find that h = 0  for large ~, implying that 
div(fle) = 0. [] 
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2. Asymptotics 

As we mentioned in the Introduction, in order to get information about 
and ]) from the identity (0.7) and the special solutions (1.8) we need to com- 

pute explicitly the asymptotic expansion of  ~u as s ~ oo. This cannot be done 
in general, but the special structure of  Maxwell equations will allow us to do 
the asymptotics we need. First, we specialize ( in Lemma t.9. 

Lemma 2.1. Let ~ and u(x, ~) be as in Lemma L9. Let - 1  < J, O' < 0, O' < J. 
We take 

( = s~ with s~ ~ +, I ~ l = l .  

I f  f E H ~ ( R n ) ,  then 

a(x, ~)  
(2.2) u(x, () - + R, 

s 

where a is the unique solution in L2, (~  n) to 

(2.3) 2~.  Va = f ,  

lim s R = O  /n L2,(Rn).  
S---~Oo 

Proof.  Let us consider su = v. Then by using Lemma 1.9 we have that' 

(2.4) Nv(s, x,  )IIH  --- c 

uniformly in s. Since the inclusion H~(R n) "~ L2,([R n) is compact (this in an 
easy consequence of  Lemma 4.1 of  [M]), we conclude that for every sequence 
Vn = V(Sn, X, rV), Sn -~ oo, there is a convergence subsequence v(sncn, x, r~). Let 

(2.5) a = lim V(Sn,), x, rV) ~ L2,(~,n). 
n---~ O0 

In principle, a depends on the sequence taken. However, we can see that this 
is not the case: Since u satisfies the equation 

Au + 2( .  Vu = f ,  ( = sn~i)~, 

taking the limit as n ~ oo of  the equation we get that a as in (2.5) must satisfy 

(2.6) 2~.  Va = f .  

However, there is a unique L2,(R n) solution of  (2.6) (see the arguments in 
proving Corollary 3.4 in [S-U II]). Therefore 

a = lim su(x, ( ) ,  
$---~0o 

concluding the proof  of  the lemma. [] 

In our case we need to get a further term in the expansion of  g/as in (1.8). 
In general it is not possible to do so. To indicate under which type of  assump- 
tions this is possible, we now state a lemma whose proof  we shall use later on. 
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1.emma 2.7. Let ~, g', (, s, ~, u be as in Lemma 2.1. Assume f E H ~ ( R  n) and 
aE W~([Rn). Then 

b(x, r~) (2.8) u(x ,  ( )  - a (x ,  ~ )  + _ _  + 1~ 
S S 2 

as s ~ o ~ ,  where b ~ L 2 ( R  n) is the unique solution to 

(2.9) 2~.  Vb = - A a ,  

and lims_,oo s21~ = 0 in L~,(Rn). 

Proof. The proof follows the same lines as Lemma 2.1. The assumption 
a E W~([P n) is needed to use the uniqueness and existence lemma of [S-U II]; 
the fact that a has compact support implies - A a  E L~+ 1. [] 

We now find the asymptotics of ~ that we shall need, with ~u as in (1.8). 
From now on we shall assume a, f ie  C70(t2). Let us set 

(2.10) zl = II ~ - ~ ,  [IC7(~) ~l-II/~ -- 8 .  IIc7(~). 

Proposition 2.11. Let q/, r be as in Theorem 1.6 with zl < z. Then there exist 
scalar functions dl, dl, and d2, and vector functions D and R such that 

D 
qt = (dl + dl) P + d2k + - -  + R. 

s 
(2.12) 

Moreover, 

(2.13) 

(2.14) 

(2.15) 

d I = d 1 (x, p, ]r I k[ ,  [ldlllH~ --<-- Czl, 

dl = dl (x, s, p, k), lim II dl  IIH~, = o, 
3--~O0 

d2=  - - - - 1 ,  
O/, 

(2.16) 

D=Do(x ,p , f r  + Dl(x ,p ,  fc)lk [ + D2(x ,p ,k)  Ikl 2, I[Di[I~/~ <- Czl, j = O ,  1,2, 

(2.17) R = R (x, s, p, k), lira s II e IIH~, = 0,  
s---~oo 

where k = k~ ] k I, C is a positive constant independent of Zl, and - 1 < ~' < ~ < O. 

Proof. We use methods similar to those used in the proof of Lemmas 2.1 and 
2.7. Our assumptions on a and fl imply that ~EH~([R3). We shall set 

q t = A + G ,  

where A satisfies a "transport  equation" given below. As in I_emma 2.1, the 
function A is uniquely determined by ~u, and the remainder G satisfies 

(2.18) lim I] GI]n4~, = 0 
s--~oo 



An Inverse Problem for Maxwell's Equations 81 

for any - 1  < 6 ' <  5. The equation determining A is 

(2.19) 2p. V A - p .  V l n c ~ ( k + A )  + V ln(c~fl). ( k + A ) p = O .  

Thus A EH~(IRS). We shall show that 

A = dip + dzk 

with d I and d2 as in (2.13) and (2.15). We rewrite (2.19) as 

2p .V 1 A = 1 ( V l n ( o e B ) . A ) p + - ~ - ( p .  V l n o O k  

1 
, -  (k- V ha(~/b) p, 

and decompose A = A 1 + A 2 with Aj, j = 1, 2, satisfying 

(2.20) 2p .V A2 - ~ ( p - V i n e ) k ,  

( ~ _ )  1 (k. Vln(o~fl))p 1 (Vln(olfl)A1) p (2.21) 2/9. V A 1 - 

1 
r -  (V ln(t~fl)A2)p. 
~4e~ 

It is clear that dzk satisfies (2.20). From (2.20) and the fact that p .  V is an 
invertible operator from H~([R 3) to H~'+I(IR3), we see that 

(2.22) A2 = dz k. 

Substituting (2.22) into (2.21) we get a unique solution A1EH6([R). Since the 
right-hand side of (2.21) is a scalar multiple of p, it follows again from the 
invertibility of p .  V that there must be a scalar function dl satisfying (2.13), 
so that 

A1 = dip. 

Since A EH6([R3), we find that GEHS([R3). We now show that G has the 
decomposition given by (2.12). Substituting q /=  dip + dzk + G into the equa- 
tion (1.22) yields 

(2.23) 

AG + 2~. VG - (~. V In ~) G - V In a- VG + ( V  ln(t~fl) �9 G)sp = 11 + 12 + 13, 

where 

(2.24) I1 = - (Edl + ik. gdl + gml" Vdl) P, 
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) itkl2 (2.25) 12 = - (Ad2 + ik. Vd2) k + �9 V In ot k + (p.  V In ct) ~ -  r,o 1 

+ ( ~ . V l n o t )  (dlp+d2k) 

+ ilkl z i (k. V l n ( ~ f ) )  k 2 (601 �9 V ln(af l ) )  p - ~- 

- - -  ( (d ip  + d2k). V In(aft))  k 

- L~#(dlp + ~k) - (Hess(In 8) +otf - c.) (k + dip + d2k), 

(2.26)/3 = - (gogl �9 Vd2) k + (go) 1 �9 V In or) ( r / +  dip + d2k) 

ilk122s ( ( ~  + g o h ) ' V l n c x )  ~ ( , - V l n ~ , k  

Ikl= (O)l.V ln( f)) k g (k. V ln(otf) )  ~ - g(A. V ln(ct f ) )  r,o 1 - --~-s 
s 

-g((k ilk'2 
2s m l ) . V  In(a f t ) )  o91 

- (Hess (ln f ) +  a f t - c , ) .  ( -  i[k122s 0)1 + --gs k) 

- ( G - V  ln (c t f ) ) .  ( ~  + gogl) -L~#G 

- (Hess( ln  fl) + cxf - c.)G, 

where g = O(1/s) is given by (1.4). We find that  / j , j  = 1, 2, 3, satisfies 

(2.27) I2 E H5+1 ([P3), I3 E H~+I(P~3), l im  1113 IIH)+x = 0. 

We decompose 

(2.28) G = G 1 + G 2 + G 3 , 

where G2 is the unique solution in H5([R 3) of (2.23) with the right-hand side 
replaced by 12, where G3 is the unique solution in H4(•  3) of (2.23) with the 
right-hand side replaced with I 3, and where G 1 -- G -  G2 - G3. 

From (2.27) we have that  

(2.29) lim sll G3 IIH~ = 0. 
~---r oo  
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From (2.25), we have that 12 = O(1). Therefore, we can use a method 
similar to that which gave A to decompose 

D 
(2.30) G2 = -- +/~ ,  

s 

where D is the unique H~ solution to 

2p. VD - (p.  V In a )  D = 12 

and lim~_~ sll ll , = 0. One easily checks that D satisfies (2.16). 
We now consider the term G 1 . From (2.18), (2.29), and (2.30) we have 

that 

(2.31) lim II all , = 0. 
$--~O0 

We claim that there exists a scalar function dl satisfying (2.14) such that 

(2.32) G1 -~ d i p .  

Indeed, G 1 satisfies 

A G  1 q- 2~. V G  1 - (~1" V In a )  G 1 - V In or. V G  1 

= -[(V In(aft). G1)s + ( A d l  -I- ik. V d  1 q- g~o 1 �9 V d l )  ] t ,  

with the right-hand side a scalar mutiple of  p. Formula (2.32) follows easily 
from the fact that A + 2~- V - (~- V In a)  - V In a .  V is invertible. 

Finally, by defining R =/~  + G3 we get 

D 
G1 + G2 + G3 --dl f l  q" -- + R ,  

s 

and by (2.29), lims_~ sl[R [[H~, = 0. The proof  is now complete. [] 

Proposition 2.33. Let ~, ~u, r be as in Theorem L6 with r 1 < z. Then 

~.~/=B+R" (2.34) 

with 

lim II R' I1 , : O, < O, 
S--~Oo 

where 

(2.35) B = B(x,  p, lc)[k I . 

Moreover, there exists C > 0 independent of  Zl, so that 

(2.36) [] n II~ --< Cl'l. 

Proof.  Let ~ = ~. ~. Then using (1.19) we check that ~ satisfies 

(2.37) A ~ + 2 ~ - V ~ -  ( ~ . V l n a ) ~ - V l n a .  V~ 

= -~L~Bq - ( ( H e s s ( i n  t )  + aft - c , )  ( r / +  ~ ) .  



84 ZIQI Stm & G. Urr_Lg_ANN 

Since q/EH5([R 3) and the right-hand side of (2.37) is of order O(s)  as 
s--+oo, it follows that g7 is in H~+I([R3). Therefore, there exists a unique 

~EH~(R 3) satisfying (2.37) and, moreover, g )=O(1)  as s ~ o o .  Using 
arguments analogous to the ones in the proof of Proposition 2.11 we obtain 
the expansion 

~ = B + R "  

where B satisfies 

(2.38) 2p. VB - (p- ~Ta) B = -pL,~pA - p (Hess (In fl) + aft - c , )  (k + A),  

and the function R'  satisfies 

(2.39) lim IIR' liE, = 0, g ' <  ~. 
$---~ Oo 

From (2.13) and (2.15) it follows that the right-hand side of (2.38) belongs 
5 to H0+I(R3); hence B~H~(~3) .  It is easy to check that B satisfies (2.35) 

and (2.36). [] 

3. Proof  of  Theorem 0.4 

We use the identity (0.7) and the special solutions (1.8). We take p as in 
(1.2), and we choose ~1, /]1 as in (1.3) and ~2, /]2 as in (1.3) with p replaced 
by - p .  Our solution ej is given by 

(3.1) 

Then we have 

(3.2) 

ej = eX'~J (/]j + q/j), j = 1, 2. 

ele2  = eiX'k(/]l/]2 + //11]/2 "~" /]21]/1 + I]/11]/2)- 

Using (1.3) and (2.11) we get 

(3.3) e l e 2 = e i X " ~ ( ] k l 2 + k . A ' l ) + k . A ( 2 ) + A O ) . A ( 2 ) + O ( 1 ) ) ,  

where A U) = d(lJ)p + dt2J)k. (See (2.12).) 
The magnetic field hj involves derivatives of the electric field, and 

therefore we must be careful in determining the hehavior o f  hlh2 as s--, co 
as well as its dependence on k. Using (0.t0), we have 

1 
(3.4) hj = --  curl(eXr (/]j + q/j)) 

o9 

= eX'r + q/j) + curl q/j), 

Now by a direct computation 

(3.5) (~5~x/]~). (d52x/]2) =�89 4 -Ikl 

j =  1 ,2 .  
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Therefore 

/ �89 4 / i t  / 1  t (3.6) OtlOt2hlh2 = e ix 'k  Ikl 4 -  Ikl 2 c, + ~ + O , 

where 3=1 

11 = curl q/l" curl ~u2, 

12 = (~lX~//1)" (~2X~/2), 
(3.7) 

/3 = (~lX~Ul)-(~2xn2) + (~2x q/2)- (~1x~1), 

I 4 ----- (~IX(/'/1 q- I//1) ) �9 curl I//2 -[- (~2X(~2 -[- I//2) ) �9 curl ~1. 

The strategy of  our proof  is to find an asymptotic expansion in s of  the 
left-hand side of  (0.7) after substituting (3.3) and (3.6). By (3.3), the term 
ele 2 = O(1) as s ~ oo. We show below that the term given by (3.6) is O(s). 
We then determine in the asymptotic expansion the coefficients of  the terms 
of  order O(s) and O(1). (It turns out that the higher-order terms do not give 
any useful information.) Then the identy (0.7) implies that these coefficients 
must be zero. This leads to an integral equation in the Fourier transform space 

for ( ~  1 )  and ( ~  1 )  1 /~2 . TO prove the uniqueness result on Theo- 

rem (0.4) it will be crucial to known the dependence on k of  the coefficients 
in the asymptotic expansion. 

In the first step of  the proof we determine the asymptotic expansion in 
s of  the t e rms / j ,  j = 1, 2, 3, 4, as well as their dependence on k. From (2.12) 
we have 

(3.8) 11 = curl(daO)p + d(1)k) �9 cur l ( -d(E)p + d(2)k) + o(1).  

Thus, 

(3.9) 11 = Ii(x, p, ]r [k[ 2 + o(1), [II1[[Ws, l(t2) =_~ C'r I . 

The term 12 can be written as 

(3.10) 12 = (~lXq/1)" (~2x1//2) 

= (r ~2) (vq .  ~/2) - (r ~2) (~2" ~q) 

= (~1" ~2) (~1" I//2) "}" (k- ~1) (k" q/2) 

-- (~2" I//2) (~1" I//1) -1- (~2" I//2) (ik" q/l) + (ik" qt2) (~1" I/'/1) �9 
Using (1.3) we conclude that 

(3.11) ~1" ~2 = - � 8 9  Ikl 2 - c ,  + O ( Z ) ,  

and from (2.12) 
~ X ~ I  X 

+ o(1),  

(./-4-_,] +o.,. 
/ 
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Now using (2.34), (2.35) as well as (3.10)-(3.13) we obtain 

(3.14, I 2 -  Ik142 ~  - 1 )  o t ( ~ 2 , -  1 )  

+ I21(x, p, it)Ikl 2 + I22(x, p, Ic)Ikl 3 + o(1), 

where I21, I22 satisfy 

(3.15) IIIvllw ,, a) - Cvl, j = 1, 2. 

The term 13 can be written as 

--I3 = (~2" I]/1) (~1"//2) -- (~1" ~2) (I]/1"//2) 

+ (~1" 1//2) (~2"//1) -- (~I" ~2) (I,//2"/'/1) 

= -- (~1" q/l) (~1"//z) + i (k .  qll) (41"//2) -- (~1" ~2) (q/l" //2) 

-- (~2" ~U2) (42" //1) + i(k" q/2) (~2"//1) -- (~1" ~2) (q/2"//1)" 

By using (2.12), (3.11) and noting that //j = k +  O(1/s), j = 1, 2, we con- 
clude that 

i(k. q/l) (~1"/12) - (41" 42) (~//1"/12) + i (k .  I]/2) (42" //1) -- (~1" 42) (~t2" /'11) 

=c, ]k ,2  [ ~  * - 1 )  + et/Nf~aa~z * - 1 ) ] + 0 ( 1 ) .  

Therefore, by (2.34), we get 

I3 = Iaa(x, P, Ic)]kl 2 + 132(x, p, ~:)[kl 3 + O ( 1 ~ ,  
k s /  

(3.16) 

with 

(3.17) c ,1 ,  j = 1, 2.  

However, the term I4 is O(s).  We use the decomposition (2.12). The first 
term of I4, as in (3.7), can be written as //1 + 112 +//3 + O(1/s), where 

111 = ( s p x ( k  + ~Vl) ) - curl ~'2, 

(3.18) 112 = (�89 i k x ( k  + ~1))" curl q/2, 

113 = (p•189  i lkl  2 o~i + ~ul)) �9 curl gt2. 

Using (2.12) and noting that p x k  = i lk  t p, we have (1) 
curl  ~//2 ~-- (Vdl(2) x - P )  + (Vd2(2) X-P)  + (Vd2 (2)xk) + - - c u r l D C Z ) + ~  , 

S 

spxq/1 = i [k[ s d(zl)p + (pxD ~l)) + o(1). 
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Thus, 

(3.19) 111 =ilkl sp.  (Vdz(Z)• + i l k  [ p cur lD (2) +o (1 )  

+ i lkl s d(21)p �9 (Vd2 (2) •  + i lkl d(21)p �9 curl D (2) + o(1). 

Formula (3.19) gives the asymptotic expansion of 111 in s up to order o(1). 
From (3.18), it is easy to see that 112 and 113 are O(1). Using arguments 

similar to those used to analyze the terms /y, j = 1, 2, 3, we obtain 

II2 = II2(x, p ,  ~) lk l  3 + o<1), 

113 = II31(x, p, k ) I k l  2 + II32(x, p, k ) [ k l  3 § 0(1), 

(3.20) 

(3.21) 

where 

(3.22) lllI2llw4,,<~) § 11II31 IIw4,,<~> + lllI3211w4,,~) ~ Crl. 

In a completely analogous fashion we analyze the second term of  14 to 
obtain expansions and estimates similar to (3.20), (3.21), and (3.22). 

Now from (3.9), (3.14), (3.16), (3.19), (3.20), and (3.21) we obtain 

Proposition 3.23. L e t / j ,  j = 1, 2, 3, 4 be as in (3.7). Then there exist functions 
U, V, Uj, Vj, j = O, 1, 2, 3, such that 

z .  I k'4 OliVetti, ) Od/~ ) Ij = - g -  - 1  - 1  + sU(x ,  p, k) + V(x,  p, k) + o(1) , j=l 
where 

Moreover, 

3 
V(x ,p ,k )  = ~ Vj(x,p, Tc)lkl j )=0 

II vj IIw4,,<~> ~ Crl, j = 0 , 1 , 2 , 3 .  

Remark. The function U in Proposition 3.23 can be computed explicitly. We 
have 

- _ , p . V  . 

It is not difficult to show that this term gives a contribution equal to zero 
in term 0(1) in the expansion of  (0.7) in s. 

Now we come to the second step in the proof of  Theorem 0.4. Let us 
denote 

(3.24) ? ~  - 1  1 . 
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Substituting (3.3) and (3.6) into the identity (0.7), equating the coefficients 
of O(1) and O(s) to zero, and passing to the limit, we obtain two integral 
identities. A computation shows that the coefficient of  O(1) is zero and that 
the coefficient of O(s) is given by 

(3.25) 

J e,X.k ?2 (~2 ~) [k12 - (1 
Q 1 )  ( ~ 2 ~ 1 )  *] 

where 

+ eiX. k 1 1 S12(X, p, k) + Sll(X , p, k) = 0, 

I2 

(3.26) 

s12(x, p, k) = ((~1./~2) -B~,)I~12 + ( k A  ~2) + k "AO) + A O) "At2)) (x, p, k),  

Sil (x, p, k) = - V ( x ,  p, k) , 

with A (j) = d~lJ)( + d~ j)k as in (2.2). 
At this point, we choose p as a function of k. From (1.1) and (1.2) we 

see that one can choose col(k) and co2(k) as two mutually orthogonal 
tangent vector fields in S 2, so that Ogl(k ) and co2(k) are piecewise continuous 
functions of k. Then p(k)  is also a piecewise continuous function of k. For 
simplicity we write 

S l j ( X  , k) = Slj(x,  p (k) ,  k) ,  j = 1, 2. 

We denote by Sll,j(x, Ic) and S12,j(x, Ic), j = 0, 1, 2, 3, the coefficient of the 
jth power of Ik] in the k expansion of Sll and S12, respectively. Then from 
(2.13), (2.15), and Proposition 3.23 we obtain the estimate 

(3.27) IIS.jIIw4.,~o~ + IlSn,jllw,,,~o) --- ce~, j = o, 1, 2, 3. 

Now we take solutions of (0.11) for the magnetic field h of the form (1.8), 
and we proceed in a completely analogous fashion. We conclude that 

(3.28) 

I eix'k[~ I ~ L  \or, 2,)1k'2-(/~ 2 /~1) (1+~' 1~+(~22 ~) ,kl2c*] ,.Q 
j [(d20tl) (]~2 ~-1) ] + eiX. k 1 1 $22(X , k) + S21(X , k) = O, 

Q 

where 

/ 
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and the functions $21, $22 satisfy 

3 

(3.29) S2l(X , k) = E S21'j(X' ~) [k] J, 
j=O 

with 

l = 1, 2, 

(3.30) IIS2~,jl[w',lcm + [IS2~,jll~',~o) ~ CT1, 

We also denote 

1 1 1 1 
(3.31) U = , V . . . .  

Or2 Otl f12 f l l  

We now state the main result in this second step. 

j = 0 , 1 , 2 , 3 .  

Proposition 3.32. Let U and V be as in (3.31). Then, for T 1 small enough, 

(3.33) II ullHl(m + II vIIH,(o) l-_ C(ll u[IL2c~) + I1 vile<o)),  

where C depends only on I[~:l[wT,~(~) and [[fljllw7,oo(t?), j = 1, 2. 

Before giving a proof of this result, we define the operator ~ j , t ,  1 <= i, 
j < 2 ,  l = 0 ,  1 , 2 , 3 ,  by 

(3.34) ~/j,1 ( f )  (k) = j elx'ksij d (x, k ) Z ( x ) f ( x )  dx, 

where X is a cut-off function in C~(N 3) satisfying Z =  1 on s u p p a u  
supp ft. We claim that Sq/j, 1 is a bounded map from L2(f2) to L2(rR3). This 
is proved by using a slight variation in the proof of Theorem 18.1.11' in [HI, 
together with the estimates (3.27) and (3.30). We include here a short proof 
of this result for the sake of completeness. 

We have 

where 

~i j  l ( f )  (k) J ^* - , = Sij,~(rl k, k ) f ( t l )  drl, 
R s 

^ denotes the Fourier transform in x and 

~ij*,l = ~ i j ,  lX" 

From (3.27) and (3.30) we readily see that 

(1 +l~l)4l ^* ~i j ,  l(l~ -- k, k)l  ~ C M  
where 

YkE [~3, 

(3.35) M= sup ~ $1D~S'V,t(x,k)l dx< +oo. 
kElP 3 Q [M<_-4 

Now using Lemma 18.1.12 in [H] we conclude that ~/j,l maps L2(g2) to 
L2(IR3), with norm bounded by CM. 
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Proof of Proposition 3.32. Multiplying both sides of  (3.35) by 1/Ikl 3 we get, 
for k . O, 

A 3 

�89 ( 0 ( 1  + y ) )  (k) = - f12, r  -~_a IklJ-a(S~2,:  V) (k) 
Ikl :=o 
3 

- ~ IklJ-~(~,,jU)(k)). 
j = O  

Thus, 
h 

II Ikl ( 0 ( 1  + y ))llL2(lkl>l) ~ ~11 r 
3 

+ ~ (lIS~12,:V[IL=(Ikl>1)+ II~l,jUIle<l~l>,) 
j = 0  

_-< c(ll vlle<~) + II vIIL:<.>); 
consequently, 

[I U(1 + Y)IIH'(~) < C(l[ UIIL:<.) + 1] Vllz2(~)). 

If  y is small, we get the same estimate for U. Similar arguments can be applied 
to (3.28) to yield a similar estimate for V. [] 

For the final step of  proof  of  Theorem 0.4 we use the the method of  con- 
tradiction. Suppose that the map (a,  fl) ~ A~,p is not injective near a con- 
stant pair (c~,, fl ,) in the C 7 topology. Then there exist two sequences of  

pairs: (Otl ("), fl(")), 

(3.36) 

with 

(3.37) 

(or(n), fl(n)) E C7o(12) such that 

(or (n), ,6~ ~)) :t: (a(2 n), fl(n)) Vn,  

Acz(n) a(n) = An(n ) n(n) 

(3.38) (aj(n), ]~;tl)) C7 (c~,, fl,) as n ~ oo. 

Wit, 

We define 

(3.39) (~i (n) (x) = ~ . ,  fl(n) (x) = f l .  , Vx  E Qc, Vn,  j = 1, 2.  

Let us denote 

= ) Ol ' = n )  ) ' 

U (") V (n) 
0 "(n) = I7"(") = 

411u<") lib(.) + II w<n)lib(.)' ~/11 u +  lib(.) + II w<")II12(.)" 
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Then 

(3.40) II O{n)I1~) + II V ~ I 1 ~ )  = 1 Vn. 

Since (3.25), (3.28) hold whenever A~,#~ =A~2,#2, we conclude that there 
exist functions ~ i J  ~ (x, k), 1 = i, j ___ 2, so that 

(3.41) IlS~eJ">llw,,,(~ > ___< CTy n 

with rn = maxj=a,2([l~) ") - ~ ,  IIw~,~ + II~j <~> - ~ ,  IIw~,')- Moreover, 

(3.42) ~ei~.~[fl2,r ik[2 _ O-(n)(1 + y,(n)) �89 [k[4 _1. O(~>lk[2c,] 
/2 

+ Jei~'~[17"<")~,~l~") (x,k) + ~ ] ( " ) ~ )  (x,k)] = O, 
/2 

(3.43) 

where 

gei~'ktoeZ, lk[2 0(,0 _ ~'(,0 (1 + ) 7(n) ) 1 ]kl4 _ l~(n)Ikl 2 c.] 
t2 

+ Jei~'k[O~)~2~ ~ (x,k) + ~r(n)~z~(~) ( x , k ) ]  - -  O, 
t2 

? ( n )  = ~  - 1 - 1 , 

Ol, Ol, 

~(n) = ( .  / - -~  -- 1)  ~.  / - ~  1)  . 

Proposition 3.32 implies that 

for some constant C independent of  n. Thus, by applying Sobolev's embedding 
theorem and by extracting a subsequence, we may assume that ( t )  in), I? (n)) 
converges to a function pair (U*, V*) in L2(~ ) ,  where if2 3 f2 is a bounded 
domain. From (3.40) it is clear that 

(3.44) II u* Ilbta~ + II v* [ l~t~ = 1, 

(3.45) U*(x) = V*(x) = 0 VxEff2\I2. 

Passing to the limits in (3.42) and (3.43) and noting, from (3.41), that 

rtn), ~ ) ,  ~ ( x , k )  L'to> 0 Vk, 
we get 

(3.46) J eix'k(fl2V* tkl 2 - IU*  [kl 4 + U*[ k l2c . )  = 0, 

(3.47) ~eiX'k(ot2U * Ikl  2 - �89 v *  [kl 4 + v*[ k [ 2 c , )  - 0 .  
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Multiplying by lk[ -2 and taking the inverse Fourier transform on the left- 
hand side of (3.46) and (3.47), we conclude that (U*, V*) is the L 2 solution 
of the 6 • 6 system 

( A + c , )  U* + fl2,V* = O, 
(3.48) 

(A + c , )  V* + ~2,U* = O. 

The function (U*, V*) has compact support. By standard elliptic regularity 
we see that it is in C~((2) .  Now, we apply (A + c , )  to the first equation 
of  (3.48). Using the second one we get 

( a  + u *  - = 0 .  

Recall that c2, 2 2 = cr Then we have proved that 

A2U * + 2c.  AU* = 0. 

By unique continuation we conclude that U* = 0 in ~ .  Proceeding in a com- 
pletely analogous fashion we conclude also that V*-----0 in ~ .  However, this 
contradicts (3.44). The proof  is now complete. [] 
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